Khám phá vũ trụ bao la – Phần 3 – 10 vạn câu hỏi vì sao?

Đang tải...

Khám phá vũ trụ bao la – Phần 3 – 10 vạn câu hỏi vì sao?

Thực sự có thể mỗi năm sao Ngưu Lang và sao Chức Nữ đều gặp nhau không?

Chạng vạng tối mùa hè, gần thẳng trên đỉnh đầu của chúng ta một ngôi sao sáng rất gần, đó chính là sao Chức Nữ. Cách qua Ngân hà, ở hướng đông nam trên bầu trời, có một ngôi sao sáng đối vọng xa xa với sao Chức Nữ, đó chính là sao Ngưu Lang. Hai bên sao Ngưu Lang còn có hai ngôi sao nhỏ.

Nhìn lên bầu trời, sao Ngưu Lang và sao Chức Nữ chỉ cách nhau một dải Ngân Hà, có thể nói là cách nhau không xa trên bầu trời. Trên thực tế, khoảng cách của chúng là rất xa, vào khoảng 16,4 năm ánh sáng. Trong truyền thuyết thần thoại, mỗi năm vào ngày thất tịch (mùng 7 tháng 7 âm lịch), Ngưu Lang và Chức Nữ gặp nhau qua sông Ngân, nếu đoán chân Ngưu Lang rất nhanh, mỗi ngày đi 100 km, từ sao Ngưu Lang di chuyển đến chỗ sao Chức Nữ thì phải cần một khoảng thời gian là 4,3 tỷ năm; Cho dù là có đi tầu vũ trụ với tốc độ 11 km/giây, thì đến được sao Chức Nữ cũng phải mất 45 vạn năm; Gọi điện thoại chào nhau một tiếng, nhận được hồi âm của đối phương thì ít nhất cũng cần 32,8 năm. Có thể nói việc hai ngôi sao Ngưu Lang và Chức Nữ mỗi năm gặp nhau một lần là hoàn toàn không thể.

Sao Ngưu Lang và sao Chức Nữ cách địa cầu của chúng ta đều rất xa, sao Ngưu Lang cách chúng ta 16 năm ánh sáng, cũng chính là nói chúng ta hiện nay nhìn thấy sao Ngưu Lang là ánh sáng mà nó phát ra 16 năm trước. Còn sao Chức Nữ cách địa cầu lại càng xa hơn, khoảng 26,3 năm ánh sáng Chính vì chúng cách chúng ta xa xôi như vậy nên nhìn lên mới trở thành hai điểm sáng nhỏ. Kỳ thực, sao Ngưu Lang và sao Chức Nữ đều có thể tích gấp hai lần Mặt trời, nhiệt độ bề mặt của chúng cao hơn Mặt trời tới 2000 độ C, ánh sáng mà nó phát ra mạnh gấp 10 lần Mặt trời; Sao Chức Nữ còn lớn hơn sao Ngưu Lang, thể tích của nó gấp Mặt trời 21 lần, ánh sáng mà nó phát ra gấp 60 lần Mặt trời. Nhiệt độ bề mặt của sao Chức Nữ gần 10.000 độ C, cao hơn nhiệt độ của tia lửa điện mấy lần, chẳng trách chúng ta nhìn thấy hào quang của sao Chức Nữ có màu trắng điểm chút ánh sáng xanh.

Ban ngày các ngôi sao trốn đi đâu vậy?

Nhắc đến các vì sao, người ta thường liên tưởng đến ban đêm. Các vì sao nhấp nháy chỉ ban đêm mới có. Vậy thì ban ngày các vì sao trốn đi đâu?

Thực ra các vì sao ở trên trời từ đầu tới cuối, từ sáng đến tối, lấp lánh trong không trung, chỉ do ban ngày chúng ta không nhìn thấy chúng mà thôi. Đây là do buổi sáng khi Mặt trời mọc, một số tia sáng trong Mặt trời bị khí quyển của Trái đất chiếu vào, làm sáng rõ cả bầu trời, làm chúng ta không nhìn thấy sự yếu đi của các vì sao. Nếu không có bầu khí quyển, bầu trời sẽ đen kịt, cho dù ánh Mặt trời mạnh hơn cũng có thể nhìn thấy các vì sao. Tình trạng trên Mặt trăng chính là như vậy.

Trên thực tế, qua kính viễn vọng thiên văn, chúng ta cũng có thể nhìn thấy các vì sao vào ban ngày. Trong đó có hai nguyên nhân: Thứ nhất là ống kính của các kính viễn vọng thiên văn đã chắn mất đa phần ánh sáng Mặt trời chiếu trong khí quyển xuống Trái đất, cũng giống như con người tự tạo ra một bầu trời đêm nhỏ; Thứ hai, tính quang học của kính viễn vọng có thể làm cho toàn bầu trời tối đen đi, mà điểm sáng của các vì sao ngược lại lại mạnh lên. Như vậy, khi đó các vì sao lại hiện rõ diện mạo vốn có của nó.

Dùng kính viễn vọng thiên văn để ngắm các vì sao vào ban ngày, so với ngắm vào ban đêm, thì kết quả cho thấy có một số sự khác biệt, các vì sao không có độ sáng cao cũng khó mà nhìn thấy được. Nhưng như vậy ruốt cuộc đã chứng minh được rằng ban ngày cũng có thể nhìn thấy được các vì sao.

Tại sao phải nghiên cứu các phần tử xung quanh các vì sao?

Các nhà thiên văn học thường coi các loại vật chất như hơi và bụi bặm trong không gian giữa các vì sao được gọi chung là vật chất xung quanh các vì sao. Những năm 30 của thế kỷ XX, các nhà khoa học dùng kính viễn vọng quang học bất ngờ phát hiện ra mấy loại phân tử hai nguyên tử trong mây thể hơi giữa các vì sao. Do khả năng quan sát của kính viễn vọng quang học này còn nhiều hạn chế, trong vòng 30 năm sau đó, nghiên cứu quan sát các phân tử giữa các vì sao về cơ bản bị ngưng trệ. Sự phát triển của thiên văn học bức xạ điện cuối cùng đã mở ra kho báu tri thức cho con người về các phần tử giữa các vì sao.

Năm 1963, nhà khoa học Mỹ lần đầu tiên dùng kính viễn vọng bức xạ điện phát hiện ra phân tử gốc (OH). Năm năm sau, lại phát hiện ra amôniac (NH3), phân tử nước, một loại phân từ hữu cơ kết cấu phức tạp – formaldehyde (H2CO). Kể từ đó, các loại kính viễn vọng bức xạ điện loại lớn của nhiều quốc gia trên thế giới đổ xô vào công tác tìm kiếm phân tử giữa các ngôi sao mới, đúng như một nhà thiên văn học từng nói: “Việc đài thiên văn thảo luận phân tử trở thành mốt”. Những phát hiện này đã làm thay đổi một vài cách nhìn sai lệch của các nhà thiên văn xưa. Ví dụ, Nguyên Tiên cho rằng mật độ vật chất trong không gian giữa các vì sao vô cùng thấp, khó có thể hình thành hai phân tử của một nguyên tử, cho dù hình thành, do tác dụng của tia hồng ngoại và tia bức xạ của vũ trụ rất dễ phân giải, tuổi thọ của nó thấp.

Sự phát hiện của các phân tử giữa các vì sao được liệt vào một trong bốn phát hiện hiện tượng thiên văn học lớn trong những năm 60 của thế kỷ XX, cho đến tận ngày nay, con người đã phát hiện được hơn 60 loại phân tử giữa các vì sao trong hệ Ngân hà. Trong quá trình nghiên cứu vật lý và hoá học của các phân tử giữa các vì sao đã giành được những tri thức mà trên Trái đất không có cách nào có được, đưa ra một thông tin hữu ích cho nghiên cứu các vấn đề quan trọng của thiên văn học.

Trong hệ Mặt trời, hệ Ngân hà và trong các tinh hệ khác, đã phát hiện ra phân tử oxy, phân tử nước và một vài phân tử hữu cơ. Trong các phân tử giữa các vì sao đã phát hiện ra còn có Xyanogen hoá hiđro, formaldehyde (H2CO), phân tử axêton alkyn, ba loại phân tử hữu cơ này là nguyên liệu hợp thành axit amôni không thể thiếu. Do đó cho thấy, trong không gian vũ trụ, rất có thể tồn tại axit amoni. Axit amoni là thành phần chủ yếu cấu thành protein và axit nucleic, do vậy ở những nơi bên ngoài Trái đất cũng có thể tồn tại các trạng thái sống muôn màu muôn vẻ.

Các ngôi sao trong quá trình hình thành vật chất giữa các vì sao và sự trở về vật chất giữa các vì sao, có thể tiến hành nghiên cứu thông qua phân tích đường phổ phân tử, kết quả của nó có thể làm căn cứ để tìm ra các hiện tượng thiên văn khác. Tận dụng thăm dò kết cấu phân tử mây, mà còn có thể nghiên cứu vận động kích thước lớn, hình thái và chất lượng đặc trưng phân bố của hệ Ngân hag và tinh hệ ngoài hệ Ngân hà…

Nơi không gian giữa các vì sao dưới điều kiện cực đoan như siêu chân không, nhiệt độ siêu thấp, siêu bức xạ, là “Phòng thực nghiệm” khó có được để nghiên cứu các hiện tượng vật lý của nguyên tử và phân tử. Những nghiên cứu của phân tử giữa các vì sao, rõ ràng là sẽ không ngừng thúc đẩy phát triển thiên văn học, vật lý học, hoá học, sinh vật học và công nghệ không gian.

Làm thế nào để đo trọng lượng của các ngôi sao?

Việc tính toán khối lượng các ngôi sao là dựa vào khối lượng của Trái đất. Thế việc tính toán khối lượng của Trái đất được tíên hành như thế nào? Hiện nay, người ta đã biết khoảng cách từ tâm Trái đất đến bề mặt Trái đất. Cho dù là hằng số của lực hấp dẫn về giá trị mà nói là một con số rất bé. Nhưng người ta có thể đo được chính xác giá trị này. Người ta vẫn hay dùng cách dựa vào đo gia tốc của lực hấp dẫn đối với một vật thể nào đó rồi từ đó tính ra lượng chất của Trái đất.

Việc trình bày nguyên lý của phép đo quả là rất khó giữa Trái đất và Mặt trăng, giữa Trái đất và Mặt trời, Mặt trời và các hành tinh khác, chúng đều chuyển động theo từng quỹ đạo của từng thiên thể. Dùng định luật Kepler, dựa vào khoảng cách giữa các quỹ đạo, thời gian chuyển động một vòng trên quỹ đạo, người ta có thể tính được trọng lượng của chúng. Ngoài ra, trọng lượng các tinh cũng được tính từ khoảng cách và chu kỳ chuyển động mà tính ra. Vì song tinh lớn hơn Mặt trời 8 lần nên có thể xem song tinh như một hố đen.

Làm thế nào để đo khoảng cách giữa chúng ta đến các vì sao?

Có rất nhiều cách đo khoảng cách đến các vì sao, ở đây chỉ giới thiệu một cách đo tương đối đơn giản. Vì các vì sao ở cách chúng ta rất xa cho nên cần phải tiến hành đo tỉ mỉ, chính xác. Cố nhiên các vì sao có cái sáng hơn, có cái tối hơn. Nói chung, những cái trông thấy mờ mờ ảo ảo thì ở cách chúng ta rất xa. Ngược lại, sao Ngưu Lang và sao Chức Nữ có độ sáng cấp 1 thì tương đối gần chúng ta. Vì vậy, có thể đo được vị trí của các sao vấy một cách chính xác. Khi đo, chúng ta cần phải lấy các số đo các vì sao mờ yếu ở gần các ngôi sao được đo (phần lớn là các vì sao ở xa hơn) làm nền.

Trái đất quay xung quanh Mặt trời hết 1 năm, tạo thành một đường tròn có đường kính bằng 300 triệu km. Thế là, tuy những ngôi sao xa mờ yếu phía sau không biến động nhưng đem đối chiếu những ngôi sao tương đối gần với những ngôi sao ở phía sau, tuy biến động rất nhỏ, song vẫn dịch sang trái hoặc dịch sang phải theo chu kỳ 1 năm. Nếu dùng đơn vị đo góc để biểu thị thì sao Ngưu Lang cách xa 8,6 năm ánh sáng chỉ lệch đi có 0,7 giây.

Tóm lại, có thể đo được các sao cách ta vài trăm năm ánh sáng. Các sao ở xa hơn thì có thể dựa vào phương pháp thống kê màu sắc ánh sáng… của các sao gần đã đo được mà tính ra. Nguyên lý của nó là: giả định các sao có màu như nhau thì về đại thể, độ sáng của chúng khác nhau, khoảng cách tăng gấp đôi, độ sáng chỉ còn ¼.

Những chòm sao trên trời được phân chia như thế nào?

Các vì sao cách chúng ta rất xa, xa đến mức chúng ta không có cách nào để phân biệt rõ những ngôi sao nào gần hơn, ngôi sao nào xa hơn, cái mà chúng ta vẫn nhìn thấy chỉ là hình chiếu của chúng trên Thiên cầu mà thôi.

Vào khoảng 3000 ~ 4000 năm trước, những người Babilon cổ đại đã nhóm các ngôi sao lại thành những hình dáng rất thú vị được gọi là chòm sao. Người Babilon đã sáng lập ra 48 chòm sao. Sau đó, các nhà thiên văn Hy Lạp đã đặt tên cho chúng, có chòm sao giống loài động vật nào đó thì dùng tên của động vật đó làm tên của chòm sao, có chòm sao thì được đặt tên theo tên của các nhân vật trong thần thoại Hy Lạp.

Trung Quốc từ trước thời nhà Chu đã bắt đầu đặt tên cho các ngôi sao trên trời, và phân chia bầu trời thành các chòm sao, sau đó đặt thành Tam viên Nhị Thập Bát tú. Tam Viên nằm ở xung quanh sao Bắc cực, Nhị Thập bát tú nằm ở những nơi có Mặt trăng và Mặt trời đi qua.

Đến thế kỷ thứ II trước công nguyên, sự phân chia của các chòm sao ở phía Bắc đã gần giống với ngày nay. Nhưng mấy chục chòm sao ở phía Nam, về cơ bản là sau thế kỷ XVII mới dần dần được xác định. Do các nước có nền văn hoá phát triển tương đối sớm thì nằm ở bắc bán cầu nên đối với những nước này mà nói, có rất nhiều chòm sao ở phía Nam đều không nhìn thấy được vào mùa đông.

Hiện nay, các chòm sao quốc tế thông dụng tổng cộng có 88 chòm, là do Hội liên hợp Thiên văn học quốc tế phân chia và quyết định lại vào năm 1928. Trong đó có 29 chòm sao ở phía Bắc đường xích đạo của thiên cầu, 46 chòm sao nằm ở phía Nam xích đạo của thiên cầu, vượt lên trên đường xích đạo của thiên cầu có 13 chòm.

Tên của 88 chòm sao này, có khoảng một nửa là đặt theo tên động vật như chòm Đại Hùng, chòm Sư Tử, chòm Thiên Hạc, chòm Thiên Nga; ¼ lấy tên của các nhân vật trong thần thoại Hy Lạp, ví dụ như chòm sao Tiên Hậu, sao Tiên Nữ, sao Anh Tiên, chòm sao kính hiển vi, chòm sao kính viễn vọng, chòm sao đồng hồ, chòm sao giá vẽ. Tuy rằng phương pháp phân chia các chòm sao của người xưa không khoa học, nhưng tên gọi của các chòm sao vẫn tiếp tục được dùng cho đến ngày nay. Hệ thống các chòm sao do người Trung Quốc cổ đại phân chia tuy không sử dụng nữa, nhưng còn lưu giữ được một số tên gọi cổ xưa của các chòm sao.

Mặt người trên sao Hoả: Vì sao mắt ta nhìn gà hoá cuốc?

Khả năng thu nhận các tín hiệu thị giác và lấp đầy chúng vào những khoảng trống đã cho phép loài người xử lý thông tin nhanh chóng. Song điều này đôi khi cũng gây “bé cái nhầm” – chẳng hạn như khi nhìn thấy các vật mà thực tế không tồn tại ở đó.

“Đó là biểu hiện của sự quen thuộc, chẳng hạn khi chúng ta nhìn thấy hình mặt người trên sao Hoả, trong một cánh rừng hay trên một đám mây”, các nhà khoa học, thuộc Đại học Boston, Mỹ, cho biết. “Chúng ta đã quá quen với khuôn mặt người đến mức chúng ta nhìn ra họ ở những nơi họ không hề xuất hiện”.

Năm 1976, phi thuyền Viking 1 của NASA đã chụp ảnh một khoảng nhỏ ở trên bề mặt Hoả tinh. Bóng của một trong các đỉnh núi ở đây đã gợi sự liên tưởng đến một khuôn mặt người.

Để tìm hiểu hiện tượng “đánh lừa” của đôi mắt, các nhà khoa học đã nghiên cứu quá trình thu nhận tri giác – sự gia tăng tích luỹ do tiếp xúc lặp đi lặp lại nhiều lần.

Để chứng tỏ điều này xảy ra như thế nào, nhóm nghiên cứu đã huấn luyện cho mọi người trong một phòng thí nghiệm làm quen với “các thông điệp tiềm thức”.

Người tham gia xem một màn hình máy tính với các chấm chuyển động mờ nhạt đến mức chúng hầu như không nhìn thấy được. Trong thử nghiệm đầu tiên, họ không thể đoán ra các chấm đang chuyển động theo hướng nào.

Trong một khoá huấn luyện sau đó, người tham gia được yêu cầu xác định những ký tự trên màn hình – trong khi các chấm vẫn tiếp tục chuyển động trên phông nền.

Sau cùng, những người này một lần nữa lại đoán xem các chấm di chuyển theo hướng nào. Ngạc nhiên thay, họ có xu hướng gán cho các chấm hướng di chuyển trùng với hướng mà chúng đã chuyển động trong khoá huấn luyện. Vì một lý do nào đó, sự tập trung cao độ vào các ký tự đã cho phép họ lĩnh hội vô thức các dấu chấm. Họ đã tiếp nhận mà thậm chí không nhận ra nó.

Vì sao trên sao Thuỷ không có nước?

Ngược lại hoàn toàn với ý nghĩa của tên gọi, trên sao Thuỷ không có một giọt nước nào cả.

Các thành phần ban đầu cấu tạo nên các hành tinh của hệ Mặt trời đều như nhau. Trên sao Thuỷ cũng có khí quyển và nước, song ở nhiệt độ quá cao vì ở gần Mặt trời nhất và sức hút của bản thân tương đối yếu, không thể giữ lại khí quyển xung quanh mình, nên về sau nó bị mất hết lượng nước.

Đồng thời với việc quay quanh Mặt trời, sao Thuỷ cũng tự xoay chầm chậm, chu kỳ tự quay là 59 ngày. Trong 59 ngày, nó lại có thể quay xung quanh Mặt trời hơn nửa vòng. Vì thế, thời gian ban ngày trên sao Thuỷ rất dài, tương đương với 176 ngày trên Trái đất. Trong quãng thời gian đó, so với Mặt trời mà trên Trái đất nhìn thấy, có một Mặt trời lớn gấp 7 lần đang hun đốt sao Thuỷ. Khi sao Thuỷ ở vào điểm gần Mặt trời nhất, nơi bề mặt hướng về phía Mặt trời có nhiệt độ gần đạt 400 độ C. Trong điều kiện nhiệt độ cao đến thế, ngay cả chì cũng nhanh chóng nóng chảy ra.

Vì sao vành ánh sáng của sao Thổ lại có dạng hình vành khuyên?

Sao Thổ là hành tinh thứ 6 quay quanh Mặt trời, người ta còn gọi sao Thổ là hành tinh ngoài, vì nó chuyển động quanh Mặt trời theo quỹ đạo bên ngoài quỹ đạo Trái đất. Quỹ đạo của sao Thổ và Trái đất gần như trên cùng một mặt phẳng, vành sáng sao Thổ nghiêng một góc 280 độ so với mặt phẳng hoàng đạo (mặt phẳng quỹ đạo của sao Thổ) nên có một phương hướng xác định.

Nếu vành sáng của sao Thổ lại nghiêng 90 độ thì phải 29 năm rưỡi, đúng thời gian sao Thổ chuyển động một vòng quanh Trái đất, ta mới thấy được vành sáng của nó. Nhưng điều đó là không thể được vì từ Trái đất nhìn lên sao Thổ, vành sáng của sao Thổ chỉ lấp lãnh dưới ánh sáng Mặt trời chiếu sáng vì ở phía đối diện bị che khuất thì không thấy gì nữa. Lúc đó chỉ còn là bóng tối.

Khi đọc các tài liệu nghiên cứu có liên quan đến các thiên thể, ta thấy rằng Trái đất ở bên trong của sao Thổ, hơn nữa sao Thổ lại ở rất xa Trái đất, nên đứng bất kỳ vị trí nào của Trái đất chỉ có thể thấy vành sáng sao Thổ khi ánh sáng Mặt trời chiếu vào.

Người ta đã gửi các máy quan trắc bay về phía tối củ vành sao Thổ và từ đó gửi về mặt đất những bức ảnh quý giá. Trên các tấm ảnh, vành sáng sao Thổ là một hình vành khăn, hình vành khăn này cứ 15 năm sẽ đổi chiếc hình vành khăn về phía chúng ta một lần. Khi vành sáng nằm song song với tia nhìn của chúng ta thì cho dù kính viễn vọng cỡ lớn ta cũng không thể nhìn thấy được vành sáng.

>> Xem thêm : Khám phá vũ trụ bao la – Phần 2 – 10 vạn câu hỏi vì sao?

Đang tải...

Related Posts

loading...

Bình luận