Geometry \& Measurement

45°

0. < $33^{30 \%}$

Table of Contents

Geometry and Measurement

Acute Triangle: Practice Finding Area *
Units of Measurement *
Hours, Days, and Weeks *
The Right Time *
Traveling to the South Pole: Practice Coordinates and Perimeter *
Perimeter Match \#1 *
Geometry Detective: Triangle \#1 *
Obtuse Triangle: Practice Finding Area *
Identifying Triangles: Acute Triangles *
Identifying Triangles: Right Triangles *
Identifying Triangles: Obtuse Triangles *
Geometry Detective: Triangle \#2 *
Perimeter Match \#2 *
Right Triangle: Practice Finding Area *
Perimeter Match \#3 *
Finding Area: Medium *
Farming Fun! Practice Finding Area
Pentagon: Calculating Area *
Perimeter Match \#4 *
Find a New Home *
The Missing Angle: Quadrilaterals *
Parallel and Perpendicular Lines *
Angle Steering *
Certificate of Completion
Answer Sheets
* Has an Answer Sheet

Actate Triangle: Practice Finding Area

Use the clues provided to find the area of each triangle. Show your work.

Example:

Base = \qquad ft.
Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & = \\
& =\quad ـ \quad \text { sq.ft. }
\end{aligned}
$$

3
Base $=$ \qquad ft.

Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & = \\
& =\quad \text { sq.ft. }
\end{aligned}
$$

$$
\text { Base }=\quad 8 \mathrm{ft} .
$$

Height $=6 \quad \mathrm{ft}$
Area $=\frac{1}{2} \times 8 \times 6$

$$
=24 \mathrm{ft} .
$$

Base $=$ \qquad ft .
Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & = \\
& =\quad \text { ___sq.ft. }
\end{aligned}
$$

Base $=$ \qquad ft.
Height = \qquad ft.

Area $=$
$=$ \qquad sq.ft.

Units of Measurement

Help Franky decide what is the best unit of measurement to bulid areas of his house!

1. Length of the bedroom
a. Inches
b. Miles
c. Millimeters
d. Feet

2. Height of ceiling
a. Feet
b. Kilometers
c. Miles
d. Centimeters
3. Width of fence boards
a. Miles
b. Yards
c. Inches
d. Feet
4. Water for pool
a. Cups
b. Gallons
c. Tablespoons
d. Liters
5. Length of lawn
a. Centimeters
c. Yards
d. Inches

Math

 Time
Hours, Days, and Weeks

Answer the questions by converting the units of time.
Remember, 1 day equals 24 hours and 1 week equals 7 days.

Grandma knitted a scarf for me in 2 weeks. How many days did it take her?

Mr. Waterstone wrote a letter to Ms. Jacobs. It took 4 weeks to arrive.
How many days did it take?

Tom rode a hot air balloon across the ocean. He was on the balloon for 3 days. How many hours was he on the balloon?

It took Mr. Carpenter a week and one day to fix the fence. How many hours did he spend fixing the fence?

Meg read a book in 3 weeks, 2 days, and 3 hours. How many hours did she spend reading the book?

Math

Time

The Right Time

Answer the questions by converting the units of time.
Remember, 1 hour equals 60 minutes and 1 minute equals 60 seconds.

Amy played flute during her recital. The song lasted for 303 seconds. How many minutes did she play?

Denny danced to all the songs on his mp3 player. His mp3 player has 200 minutes and 180 seconds of music. How many hours did he dance?

Traveling to the South Pole: Practice Coordinates and Perimeter

The penguin parents are traveling to the South Pole to pick up their baby, stopping at each point on the grid along the way. Then together, the three of them will go back home in a different route. See how far their route is by finding the distance between the coordinates (see examples below). Review: The first number refers to X coordinate. The second number refers to Y coordinate.

Example:
Day 1: Distance between home $(1,5)$ to Day 1 stop $(1,4)$. Subtract difference of Y-value of each location. Y value of home $=5, Y$ value of Day 1 stop $=4$.
Therefore, the distance is 5-4=1. Then draw a line from each point and write 1 .
Day 2: Distance between Day 1 stop $(1,4)$ to Day 2 stop $(4,4)$. Subtract difference of X-value of each location. X value of Day 2 stop $=4, X$ value of Day 1 stop $=1$.
Therefore, the distance is 4-1=3. Then draw a line from each point and write 3 .

Find the perimeter of each rectangle, then draw at least 2 rectangles that have the same perimeter.

Geometry Detective: Triangle

Find area of each triangle using clues from the lengths provided. Show your work.

Review:

Triangle Area $=\frac{1}{2} \times$ base \times height
The height of a triangle is the distance from the base to its opposite vertex, or angle.
The base of a triangle can be any of its sides.
The height line and base must be perpendicular to each other.

Example:

And Obtuse Triangle: Practice Finding Area

Use the clues provided to find the area of each triangle. Show your work.

Review:

Triangle Area $=\frac{1}{2} \times$ base x height
The base of a triangle can be any one of its sides. The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

An obtuse triangle is a triangle that has one obtuse angle (an angle that is greater than 90 degrees).

8

Base = \qquad ft .
Height = \qquad ft.
Area =

$$
=
$$

\qquad sq.ft.

$$
\text { Base }=8 \quad 8 \mathrm{ft} .
$$

Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 8 \times 7 \\
& =28
\end{aligned}
$$

Base = \qquad ft.
Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & = \\
& =\quad _\quad \text { sq.ft. }
\end{aligned}
$$

Base $=$ \qquad ft.
Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & = \\
& =\quad ـ \quad \text { sq.ft. }
\end{aligned}
$$

Base $=$ \qquad ft.

Height = \qquad ft.

Area $=$
$=$ \qquad sq.ft.

An acute triangle is a triangle that has three acute angles (angles that each measure less than 90 degrees). Circle the acute triangles below.

Find the value of the missing angles in these acute triangles. Remember, the three angles in a triangle must add up to 180 degrees.

Math Geometry
 Identifying Triangles: Right Triangles

A right triangle is a triangle that has one right angle (90 degree angle).

Circle the triangles that is a right triangle.

Find the value of the missing angles in these right triangles. Remember, three angles in every triangle always add up to 180 degree.

An obtuse triangle is a triangle that has one obtuse angle (an angle that measures more than 90 degrees). Circle the obtuse triangles below.

Find the value of the missing angles in these obtuse triangles. Remember, the three angles in a triangle must add up to 180 degrees.

\& Geometry Detective:Triangle

Find the area of each triangle using clues from the lengths provided. Show your work.

Review:

Triangle Area $=\frac{1}{2} \times$ base \times height
The base of a triangle can be any one of its sides.
The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

Find the perimeter of each rectangle, then draw at least 2 rectangles that have the same perimeter.

And Right Triangle: Practice Finding Area

Use the clues provided to find the area of each triangle. Show your work.

Review:

Triangle Area $=\frac{1}{2} \times$ base x height

The base of a triangle can be any one of its sides.
height (H) The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

base (B)

A right triangle is a triangle that has one right angle (90 degree angle). So the height is the side of a triangle.

Example:

Base $=$ \qquad ft.
Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & = \\
& =\quad \text { sq.ft. }
\end{aligned}
$$

$$
\text { Base }=\quad 10 \quad \mathrm{ft} .
$$

Height $=\underline{9} \mathrm{ft}$.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 10 \times 9 \\
& =45 \quad \mathrm{ft} .
\end{aligned}
$$

Base = \qquad ft.
Height = \qquad ft.

$$
\begin{aligned}
\text { eight } & =_\mathrm{ft} . \\
\text { Area } & = \\
& =\text { sq.ft. }
\end{aligned}
$$

rent.

Base $=$ \qquad
Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & = \\
& =\quad \text { sq.ft. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\text { Base }= & \text { ft. } \\
\text { Height } & =_ \text {ft. } \\
\text { Area } & = \\
& =\quad \text { sq.ft. }
\end{aligned} \\
&
\end{aligned}
$$

Find the perimeter of each rectangle, then draw at least 2 rectangles that have the same perimeter.

,
 -

Finding Area: Medium

 Help Piggy pick a room with the largest area. Add up the sides using the lengths of each tile, then find the area. Remember, Area $=\mathrm{Lx}$ W.

Example:

Area $=25 \times 19=475$ sq.ft.

$10+6+3=19$

Farming Fun!

Practice Finding Area

Divide the land into different sections to plant each type of vegetable. Color and label it. Each square equals one square foot.

equals 1 square foot

Pentagon: Calculating Area

A pentagon contains many shapes that you probably already know. Use a ruler to divide the pentagon into regular shapes that you are familiar with. Then, name the shapes you created. This will help you practice finding the area of irregular shapes.

Example:

One pentagon

One triangle
One trapezoid

Three triangles
One rectangle

Challenge!

Calculate the area of this pentagon using the heights and lengths of the geometric shapes.

Find the perimeter of each rectangle, then draw at least 2 rectangles that have the same perimeter.

Help Mr. Rabbit find his new home. The total area of his place has to be at least 60 square feet. This includes the area of a roof (triangle) plus the area of the house (rectangle).

Review:

Rectangle Area $=$ length x width
Triangle Area $=\frac{1}{2} \times$ base \times height

Which home should Mr. Rabbit move into? Circle it.

The Missing Angle: Quadrilaterals

In every quadrilateral, all four angles add up to 360°.

$$
360=A+B+C+D
$$

Use this rule to find the missing angle in the quadrilaterals. See the example.

Parallel and Perpendicular lines

Elouisa the Eel

Elouisa the Eel needs help learning parallel and perpendicular lines. Draw parallel lines through the black dots and perpendicular lines through the white dots. Use a ruler to help you draw straight lines.

M A T \quad A G EO M ETRY

Steering a ship requires practice and precision. It also requires you to think about math and angles.

Turn the ship's wheel according to the angle measurements given. See the examples below. With each new turn, indicate the ship's new direction by drawing a line towards it. Turn clockwise if the angle is positive, counterclockwise if it is negative. Use a ruler to help you draw straight lines.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Turn
 Degrees | $+26^{\circ}$ | $+37^{\circ}$ | -51° | $+153^{\circ}$ | -92° | -30° | -9° | $+185^{\circ}$ | -67° | $+49^{\circ}$ | $+93^{\circ}$ | -60° |
| New
 Direction | 26° | 63° | | | | | | | | | | |

Answer Sheets

Geometry and Measurement

Acute Triangle: Practice Finding Area
Units of Measurement
Hours, Days, and Weeks
The Right Time
Traveling to the South Pole: Practice Coordinates and Perimeter
Perimeter Match \#1
Geometry Detective: Triangle \#1
Obtuse Triangle: Practice Finding Area
Identifying Triangles: Acute Triangles
Identifying Triangles: Right Triangles
Identifying Triangles: Obtuse Triangles
Geometry Detective: Triangle \#2
Perimeter Match \#2
Right Triangle: Practice Finding Area
Perimeter Match \#3
Finding Area: Medium
Pentagon: Calculating Area
Perimeter Match \#4
Find a New Home
The Missing Angle: Quadrilaterals Parallel and Perpendicular Lines
Angle Steering

Answer Sheet

${ }^{\text {Ath }}$ arde Acute Triangle: Practice Finding Area
Use the clues provided to find the area of each triangle. Show your work.

Review:

Triangle Area $=\frac{1}{2} \times$ base \times height
The base of a triangle can be any one of its sides.
The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

An acute triangle is a triangle that has three acute angles (angles that measure between 0 and 90 degrees).
Example:

Base $=8 \mathrm{ft}$.
Height $=6 \mathrm{ft}$ ft .

Area $=\frac{1}{2} \times 8 \times 6$

$$
=24 \mathrm{ft}
$$

$$
\text { Base }=\quad 14 \mathrm{ft} .
$$

$$
\text { Height }=10 \mathrm{ft} .
$$

$$
\begin{aligned}
& \begin{aligned}
\text { Base }= & \frac{10}{\text { Height }}
\end{aligned}=\frac{12}{\mathrm{ft}} \mathrm{ft} . \\
& \text { Area }=\frac{1}{2} \times 10 \times 12 \\
&=60 \mathrm{sq.ft} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 14 \times 10 \\
& =\quad 70 \text { sq.ft. }
\end{aligned}
$$

2
Base $=$ \qquad ft.

Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 10 \times 5 \\
& =25 \text { sq.ft. }
\end{aligned}
$$

Base $=$ \qquad ft .
Height \qquad ft.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 8 \times 7 \\
& =\quad 28 \quad \text { sq.ft. }
\end{aligned}
$$

Units of Measurement

Help Franky decide what is the best unit of measurement to bulid areas of his house!

1. Length of the bedroom
a. Inches
b. Miles
c. Millimeters
d. Feet

2. Height of ceiling
a. Feet
b. Kilometers
c. Miles
d. Centimeters
3. Width of fence boards
a. Miles
b. Yards
c. Inches
d. Feet
4. Water for pool
a. Cups
b. Gallons
c. Tablespoons
d. Liters
5. Length of lawn
a. Centimeters
c. Yards
b. Kilometers
d. Inches

Answer Sheet

Math

 Time
Hours, Days, and Weeks

Answer the questions by converting the units of time.
Remember, 1 day equals 24 hours and 1 week equals 7 days.

Mr. Waterstone wrote a letter to Ms. Jacobs. It took 4 weeks to arrive. How many days did it take?
(4 weeks) $\times(7$ days $)=28$ days

Tom rode a hot air balloon across the ocean. He was on the balloon for 3 days. How many hours was he on the balloon?
(3 days) \times (24 hours) $=72$ hours

It took Mr. Carpenter a week and one day to fix the fence. How many hours did he spend fixing the fence?
(1 week) + (1 day) = 8 days
(8 days) \times (24 hours) $=192$ hours

Meg read a book in 3 weeks, 2 days, and 3 hours. How many hours did she spend reading the book?
(3 weeks) $+(2$ days $)=23$ days
(23 days) $\times(24$ hours $)=552$ hours (552 hours) $+(3$ hours) $=555$ hours

The Right Time

Answer the questions by converting the units of time．
Remember， 1 hour equals 60 minutes and 1 minute equals 60 seconds．

Lynn gives a piano lesson after school everyday．Today she taught for 95 minutes．How many hours did she teach today？

$$
\frac{95}{60}=1 \text { hour } 35 \text { minutes }
$$

Amy played flute during her recital．The song lasted for 303 seconds． How many minutes did she play？

$$
\frac{303}{60}=5 \text { minutes } 3 \text { seconds }
$$

Denny danced to all the songs on his mp3 player．His mp3 player has 200 minutes and 180 seconds of music．How many hours did he dance？

$$
\begin{gathered}
\frac{180}{60}=3 \text { minutes } \frac{200}{60}=3 \text { hours } 20 \text { minutes } \\
3 \text { hours } 23 \text { minutes }
\end{gathered}
$$

Answer Sheet

Traveling to the South Pole: Practice Coordinates and Perimeter

The penguin parents are traveling to the South Pole to pick up their baby, stopping at each point on the grid along the way. Then together, the three of them will go back home in a different route. See how far their route is by finding the distance between the coordinates (see examples below).
Review: The first number refers to X coordinate. The second number refers to Y coordinate.

Example:

Day 1: Distance between home $(1,5)$ to Day 1 stop $(1,4)$. Subtract difference of Y-value of each location. Y value of home $=5, Y$ value of Day 1 stop $=4$.
Therefore, the distance is $5-4=1$. Then draw a line from each point and write 1 .
Day 2: Distance between Day 1 stop $(1,4)$ to Day 2 stop $(4,4)$. Subtract difference of X-value of each location. X value of Day 2 stop $=4, X$ value of Day 1 stop $=1$.
Therefore, the distance is $4-1=3$. Then draw a line from each point and write 3 .

Day 3: $(4,1)$
Day 4: $(3,1)$
Day 5: $(3,0)$
4-1 = 3
$4-3=1$
$1-0=1$

Day 6: $(6,0)$
Day 7: $(6,3)$
Day 8: $(6,5)$
Day 8 to Home:
$6-3=3$
$3-0=3$

$$
5-3=2
$$

$$
6-1=5
$$

Answer Sheet

And Geometry Detective: Triangle

Find area of each triangle using clues from the lengths provided. Show your work.

Review:

Triangle Area $=\frac{1}{2} \times$ base x height
The height of a triangle is the distance from the base to its opposite vertex, or angle.
The base of a triangle can be any of its sides.
The height line and base must be perpendicular to each other.

Height $=5+5+3+3=16$
Base $=4+7+7+8+1=27$

$$
\text { Area }=\frac{1}{2} \times 16 \times 27
$$

Obtuse Triangle: Practice Finding Area

 Use the clues provided to find the area of each triangle. Show your work.
Review:

Triangle Area $=\frac{1}{2} \times$ base \times height
The base of a triangle can be any one of its sides.
The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

An obtuse triangle is a triangle that has one obtuse angle (an angle that is greater than 90 degrees).

Base $=$ \qquad 8 f ft.
Height $=\mathbf{7} \mathrm{ft}$.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 8 \times 7 \\
& =28 \quad \mathrm{ft.}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Base }=18 \mathrm{ft} . \\
& \text { Height = } \\
& \text { + } \\
& 9 \\
& \mathrm{ft} \text {. } \\
& \text { Area }=\frac{1}{2} \times 18 \times 9 \\
& =81 \text { sq.ft. }
\end{aligned}
$$

Base $=$ \qquad ft .
Height = \qquad ft .

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 13 \times 10 \\
& =65 \text { sq.ft. }
\end{aligned}
$$

Base = \qquad ft .

Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 16 \times 5 \\
& =40 \text { sq.ft. }
\end{aligned}
$$

Base $=10 \mathrm{ft}$.
Height = \qquad ft .

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 10 \times 11 \\
& =55 \text { sq.ft. }
\end{aligned}
$$

Answer Sheet
 Identifying Triangles: Acute Triangles

Math Geometry

An acute triangle is a triangle that has three acute angles (angles that each measure less than 90 degrees). Circle the acute triangles below.

Find the value of the missing angles in these acute triangles. Remember, the three angles in a triangle must add up to 180 degrees.

Answer Sheet

Math $\widehat{\text { Geometry }}$

Answer Sheet Identifying Triangles: Right Triangles

A right triangle is a triangle that has one right angle (90 degree angle). Circle the triangles that is a right triangle.

Find the value of the missing angles in these right triangles. Remember, three angles in every triangle always add up to 180 degree.

Answer Sheet

Answer Sheet Identifying Triangles: Obtuse Triangles

Math Geometry

> An obtuse triangle is a triangle that has one obtuse angle (an angle that measures more than 90 degrees). Circle the obtuse triangles below.

Find the value of the missing angles in these obtuse triangles. Remember, the three angles in a triangle must add up to 180 degrees.

Ahd Geometry Detective: Triangle

Find the area of each triangle using clues from the lengths provided. Show your work.

Review:

Triangle Area $=\frac{1}{2} \mathrm{x}$ base x height
The base of a triangle can be any one of its sides.
The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

Height $=2+3+3=8$
Base $=3+8+3=14$
Area $=\frac{1}{2} \times 8 \times 14$
Height $=8+3+3=14$
Base $=6+4+7+3=20$

Height $=4+5=9$

$$
\begin{aligned}
& \text { Base }=6+3+2+1=12 \\
& \begin{aligned}
& \text { Area }=\frac{1}{2} \times 9 \times 12 \\
&=54 \\
& \text { sq.ft. }
\end{aligned}
\end{aligned}
$$

Answer Sheet

Review:

Triangle Area $=\frac{1}{2} \times$ base \times height
The base of a triangle can be any one of its sides. The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.
Base $=$ \qquad 10 ft.
Height $=\underline{9} \mathrm{ft}$.
Area $=\frac{1}{2} \times 10 \times 9$ $=45$ sq.ft.

Example:

A right triangle is a triangle that has one right angle (90 degree angle). So the height is the So the height is the
side of a triangle.
Base =

$$
\begin{aligned}
& \text { Base }=\frac{12}{\text { Height }=13} \mathrm{ft} . \\
& \mathrm{ft} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 12 \times 13=78 \\
& =78 \text { sq.ft. }
\end{aligned}
$$

\qquad ft.
Height $=$ ft .

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 18 \times 8=72 \\
& =\quad 72 \text { sq.ft. }
\end{aligned}
$$

Answer Sheet

Answer Sheet

Finding Area: Medium answersheet

Answer Sheet

Various answers can apply. Here are a few examples.

Pentagon: Calculating Area

A pentagon contains many shapes that you probably already know. Use a ruler to divide the pentagon into regular shapes that you are familiar with. Then, name the shapes you created. This will help you practice finding the area of irregular shapes.

Example:

One pentagon

Three triangles

One triangle
One trapezoid

One trapezoid

Three triangles One rectangle

One trapezoid
Two triangles

Challenge!

Calculate the area of this pentagon using the heights and lengths of the geometric shapes.
$8 \times 6=48$
48×1 rectangle $=48$
90
$\frac{1}{2} 6 \times 5=15$
15×2 triangles $=30$
6×2 triangles $=12$
rectangle area $=$ length x width

Answer Sheet

Answer Sheet

Help Mr. Rabbit find his new home. The total area of his place has to be at least 60 square feet. This includes the area of a roof (triangle) plus the area of the house (rectangle).

Review:

Rectangle Area $=$ length x width
Triangle Area $=\frac{1}{2} \times$ base x height

The base of a triangle can be any one of its sides.
The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.
base $=4$
height $=2$
Area of the roof $=\frac{1}{2} \times 4 \times 2=4 \quad 4 \times 2=8$

10

Area of the rectangle $=5 \times 5=25$
Total Area $=16+25=41$ square feet

Total Area $=9+35=44$ square feet Which home should Mr. Rabbit move into? Circle it. Area of the roof $=\frac{1}{2} \times 10 \times 6=30$
Area of the rectangle $=4 \times 8=32$

Answer Sheet The Missing Angle: Quadrilaterals

In every quadrilateral, all four angles add up to 360°.

$$
360=A+B+C+D
$$

Use this rule to find the missing angle in the quadrilaterals. See the example.

$$
\begin{aligned}
& 360^{\circ}=U+V+W+X \\
& 360^{\circ}=U+100^{\circ}+94^{\circ}+81^{\circ} \\
& 360^{\circ}=275^{\circ}+U^{\circ} \\
& U=360^{\circ}-275^{\circ} \\
& U=85^{\circ} \\
& \hline
\end{aligned}
$$

$$
\mathrm{S}=88^{\circ}
$$

$$
\begin{aligned}
& 360^{\circ}=P+Q+R+S \\
& 360^{\circ}=P+82^{\circ}+77^{\circ}+88^{\circ} \\
& 360^{\circ}=247^{\circ}+P^{\circ} \\
& P=360^{\circ}-247^{\circ} \\
& P=113^{\circ}
\end{aligned}
$$

Answer Sheet

Answer Sheet

